
1

 Springer-Verlag, 1999.

ICARUS : Design and Deployment of a Case-Based
Reasoning System for Locomotive Diagnostics

Anil Varma1

1Information Technology Laboratory,
 General Electric Corporate Research and Development,

Niskayuna, NY 12301
varma@crd.ge.com

ICARUS : Design and Deployment of a Case-Based
Reasoning System for Locomotive Diagnostics

Anil Varma1

1Information Technology Laboratory,
 General Electric Corporate Research and Development,

Niskayuna, NY 12301
varma@crd.ge.com

Keywords : Case-based reasoning, locomotive, diagnosis, feature extraction,
feature weighing, fault codes

Abstract. Locomotives, like many modern complex machines, are equipped
with the capability to generate on-board fault messages indicating the presence
of anomalous conditions. Such messages tend to generate in large quantities
and difficult and time consuming to interpret manually. This paper presents the
design and development of a case-based reasoning system for diagnosing loco-
motive faults using such fault messages as input. The process of using historical
repair data and expert input for case generation and validation is described. An
algorithm for case matching is presented along with some results on pilot data.

1 Introduction

There is a recent move in industry towards supporting equipment servicing as a means
of augmenting traditional revenue sources such as those generated by equipment sales
with limited warrenties and subsequent parts supply. This is especially applicable in
the case of heavy machinery which due to its design complexity is often best serviced
by the manufacturer. Examples in case include gas turbines, aircraft engines and lo-
comotives. With the emergence of long-term service contracts for such equipment, it
is essential that the manufacture minimize its cost of service by proactive on-board
and off-board monitoring and diagnosis. Within this context, this paper describes the
development of ICARUS (Intelligent Case-based Analysis for Railroad Uptime Sup-
port) - a case-based reasoning tool for off-board locomotive diagnosis for use by GE
Transportation Systems.

 Locomotives are complex electromechanical systems and are equipped with the capa-
bility to monitor their state and generate fault messages in response to anomalous

conditions of varying severity. Since removing a locomotive from a track for repair (
or powering down a gas turbine or removing an airplane engine from wing) is an ex-
tremely expensive and disruptive procedure, it is desirable that

1. Problems occurring on the equipment while in operation are accurately identi-
fied so the repair can be scheduled best keeping with the severity of the prob-
lem.

2. Problems with the equipment are completely identified so the time in the repair
shop is utilized at not merely fixing one problem but releasing an overall
healthy machine.

ICARUS was designed to reason with the fault codes generated by locomotives
during operation. In addition, it was a requirement ICARUS be able to build up it’s
information base quickly for rapid deployment and have the capability to learn as new
information became available. It was also required that the tool be applicable across
locomotive models and fleets with little modification.

This project presented three challenges that are typical of the real-world require-
ments deviating from textbook theory. First, diagnostic cases for the case base were
not readily available and had to be reconstructed by mining historical repair records.
Their accuracy was thus not guaranteed and case validation became an essential activ-
ity in itself. Very limited expert knowledge and time was available to fully validate the
cases. Association of fault codes to specific repairs was difficult due to the standard
railroad practice of multiple repairs on the same visit as well as some uncertainty
about the accuracy of the date of repair. Finally, the continual nature of the fault logs
made casting the case as a finite feature vector almost impossible.

This paper first presents the current operating scenario and the nature and avail-
ability of the data. We then present details of the process for generating meaningful
cases. A new feature extraction and weighing algorithm is described as well as the
results obtained from its implementation. This work is then related to prior activity in
the literature. Finally some lessons learned from the project about CBR design and
deployment are discussed.

2 Overview of Current Process

Locomotive fault logs are accumulated on-board the locomotive and are periodically
uploaded to a database for access in case a diagnostic need arises. Highly skilled field
engineers at General Electric Transportation Systems have acquired expert knowledge
over time that enables accurate diagnosis of locomotive problems from an examina-
tion of the fault log. While this provides positive evidence for the diagnostic signifi-
cance of fault logs, the volume of logged data makes it impossible to rely on human
examination alone for reliable and consistent identification of locomotive problems on
many hundred locomotives on a daily basis.

A case-based approach was considered as this appeared to be cognitively closest to
the procedure used by the experts during diagnosis. It was desirable to move away
from a rule based approach for several reasons. Some of these may be outlined as :

1. Accurate rules only existed for a small percentage of the locomotive’s failure
modes. The rest apparently happened in a manner too varied to capture in
rules.

2. Frequent configuration changes and upgrades make rule based approaches hard
to maintain.

3. Capturing knowledge as cases appeared to be the best approach for maintaining
knowledge in a remote diagnostics environment where the diagnostic personnel
were not necessarily all experts.

4. There was a realization that many more patterns may exist in the fault log data
then anyone was aware of or could create rules for. There was a push for a
learning approach for identifying these from case data.

5. It was desirable to deploy a functional system fairly rapidly, from concept to
pilot operation in less than a year. However, experts had severe time con-
straints while there was considerable historical data that could be potentially
mined for cases.

The objective of the project, thus was to build a tool that could take the fault log
shown in Fig. 1 as input and output the top n repair codes with associated confidence
values.

2.1 Historical Fault log and Repair Data

A sample fault log is shown in Fig. 1 . While the actual data constituting the log has
been changed or masked, the essential features of the log are present. The first two
columns identify the company that is operating the locomotive and the specific loco-
motive ID respectively. The next column indicates the date on which the fault oc-
curred. The fault itself is identified by a ‘fault code’ a unique alphanumeric label
associated with that fault. Next , a time stamp indicates the beginning and end of the
fault message. The next few columns marked with ‘X’ represent a ‘snapshot’ of some
important operating parameters of the locomotive at the time the fault occurred. Rep-
resentative examples of such parameters would be speed, operating temperatures,
pressure readings, whether certain switches are on or off etc. Finally a short text de-
scription associated with the fault code is displayed.

Fig 1. Sample Locomotive Fault Log

The fault log represents an arbitrarily long data stream with new data flowing in
every day. Locomotive experts intimately familiar with the engineering specifics of
the locomotive are able to look at the log alone and usually identify patterns that may
indicate problems. It is worthwhile noting that multiple problems may be occurring
simultaneously in the locomotive that will register a presence in the fault log. How-
ever, not all problems are critical enough to stop the basic operation of the locomotive
and these accumulate till they are attended to during a regular service visit.

Since there was no direct association from individual fault codes to actual locomo-
tive problems requiring repair, this information was sought to be implicitly acquired.
A source of data used for this purpose was the repair database maintained by the
manufacturer. The nature of the repair log was as shown in Fig. 2.

Fig. 2.Sample Locomotive Repair Log

. The basic operation of the tool required taking the fault log as input and recom-
mending a repair action with associated confidence. For reference, there were about
600 distinct faults that could be logged and 700 repair actions that could be taken. In
addition, the repair actions could be logged in the database up to a week later than the
actual physical repair.

An approach was defined wherein, candidate cases would be generated to ‘seed’ the
case base by mining historical fault log and repair records. These cases would then be

AB 2004 12-oct-1997 176B 52.93 52.95 X X X X X X Oil Problem

AB 2004 12-oct-1997 142E 52.95 53.00 X X X X X X Fault Reset

AB 2004 14-oct-1997 170F 36.91 36.99 X X X X X X Loading Limited

AB 2004 14-oct-1997 142E 36.96 75.81 X X X X X X Fault Reset

AB 2004 17-oct-1997 172B 15.63 15.63 X X X X X X High Current Problem

AB 2004 17-oct-1997 172A 15.63 15.63 X X X X X X Motor problem

AB 2004 17-oct-1997 172B 15.63 15.65 X X X X X X High Current Problem

AB 2004 17-oct-1997 1737 15.63 15.67 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1736 15.63 15.65 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1749 15.63 15.65 X X X X X X High Temp Problem

Customer Loco ID Fault Code Fault Start and

End

Snapshot

Parameters

Fault

Description
Fault Date

AB 1101 5013 24-FEB-1997 Fixed Component A

AB 1101 6105 27-MAY-1997 Scheduled Maintenance

AB 1101 4105 27-MAY-1997 Fixed Component B

AB 1101 5405 27-MAY-1997 Replaced Component D

Customer Loco ID Repair Code Repair Date Repair Description

minimally validated by format checking and checking for missing data. It was ac-
knowledged that many of these cases could be diagnostically partially or completely
incorrect. This may be due to the fact that either an incorrect repair was performed
that did not actually address the problem that was causing activity in the fault logs or
that the repair was incorrectly dated, or that there were multiple problems not all of
which were addressed.

3 Process for defining and acquiring cases

The first task was to build candidate cases from historical fault log and repair rec-
ords. A program was written to interleave the repair log with the fault log. A two year
data window was chosen for prototype case generation with data gathered for over 200
locomotives. The process of raw case generation was as follows :

1. A particular repair type (diagnosis) was chosen for case collection.
2. All locomotives repair records were sequentially scanned for occurrence of

that repair.
3. Every time that repair was encountered on a locomotive, a case was generated

that contained the fault log contents for the N days preceding that repair.
This process is shown graphically in Fig. 3.

Fig. 3. Process for Case Acquisition
Each case was labeled by the repair code – the intended diagnosis. Multiple cases

were collected for each repair code to capture the different fault code scenarios lead-

Fault Log Repair Log

AB 2004 5013 24-OCT-1997 Fixed Component A

AB 2004 17-oct-1997 172B 15.63 15.63 X X X X X X High Current Problem

AB 2004 17-oct-1997 172A 15.63 15.63 X X X X X X Motor problem

AB 2004 17-oct-1997 172B 15.63 15.65 X X X X X X High Current Problem

AB 2004 17-oct-1997 1737 15.63 15.67 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1736 15.63 15.65 X X X X X X Low Current Problem

AB 2004 17-oct-1997 1749 15.63 15.65 X X X X X X High Temp Problem

Candidate Case

Raw
Case
Base

Feasibility Review

ing to that repair being the diagnosis. This process was repeated for many repair codes
for which case-base coverage was required.

Each case so produced was still beset with certain problems. These included

1. Insufficient or missing fault log data : Since the fault log is fairly continual in
nature, gaps of many days in the log indicated missing data rather than absence
of faults.

2. Multiple repairs on the same day : There were many instances of 3-5 repairs
performed on the same day. By our process, this resulted in many cases with
identical fault logs but associated with different repairs.

3. Overlapping fault logs for repairs : If there were multiple repairs within N days
of each other, they shared a common portion of the fault log for those N days.

For the above 3 conditions, heuristics were used to weed out cases that could possi-

ble ‘contaminate’ the case base. Cases with missing fault log were eliminated. Due to
large quantities of historical data available, it was possible to restrict case selection to
only those instances where there was only one repair on a given day. Nothing was
done to correct for situation 3 since it was reasoned that the effect of overlapping fault
log would be reduced with appropriate case feature weighing if sufficient cases for
each of the overlapping repairs were collected.

 Each case thus collected was subjected to a feasibility review by an experienced
field engineer. The task of the field engineer was to review and eliminate any case in
which the fault log was obviously not related to the repair performed. This task of
saying yes or no placed a lower cognitive burden on the experts as compared to veri-
fying each case as a ‘gold’ standard for that kind of repair. About 500 cases were
collected following this procedure.

4 Feature Extraction

Much CBR work has implicitly assumed the availability of a finite number of indices
by which to characterize a case. This is not always true, however as evidenced by the
ultrasonic rail inspection system application reported in (Jarmulak & Kerckhoffs,
1997). This was certainly not true of our basic case structure. The N day fault log
constituting each case could contain from zero to an indeterminate number of occur-
rences of each fault code. The total number of fault codes occurring in the case could
potentially vary from one to over 700. It was evident that some feature extraction was
necessary to identify indexes that would unify the case representation and make case
matching possible. There were a number of options for feature representation. Cases
could be matched or distinguished by taking into account

1. Presence/Absence of fault codes.
2. Fault code frequency
3. Combinations of fault codes
4. Time based trends in fault code occurrences i.e. if fault code frequency in-

creased leading up to the repair.

5. Anomalous indicators in the parameter data i.e. if any of the continuous pa-
rameters were out of specification.

6. Sequence information in fault code occurrence i.e. if fault codes repeatedly oc-
curred in a certain sequence .

However, there was another consideration constraining the choice of features. This
was the fact that our cases were constructed by assuming that a certain causal relation-
ship existed between fault logs and repairs data when their time line was overlaid.
There was no initial evidence as to the degree of error associated with the assumptions
underlying this approach. For this reason, it was decided to keep feature extraction
fairly basic till such a determination could be made.

4.1 Fault Cluster Generation

Fault combinations were selected as the feature of choice for case representation. A
variety of tests were carried out on historical fault log data to determine the maximum
number of fault codes that appeared to occur repeatedly in combination on a given
day. The analysis appeared to indicate that more than four faults seldom occurred
repeatedly in combination in test data. As a result, the following approach was
adopted. Each case was polled for a list of distinct fault codes occurring before the
repair with which it was associated. The list of distinct faults was used to generate
combinations (or fault clusters, as we termed them) as follows :

Distinct faults contained in case 1 : A,B,C,D
1-Clusters : A, B,C,D
2-Clusters : AB, AC,AD,BC,BD,CD
3-Clusters : ABC,ABD,ACD,BCD
4-Clusters : ABCD
This process was carried out for all the cases. A master list of fault clusters of each

size was maintained. Each case was now indexed in terms of its features – namely
Diagnosis + fault clusters. An example is shown in Fig. 4.

 Diagnosis Fault Clusters

Fig 4 Case Representation with Fault Clusters

The objective of this exercise was to generate a complete list of candidate fault clus-
ters of size four or less. Using this list, the next step was to determine which of this

CASE 1

CASE 3

Repair 1

Repair 1

Repair 2

A , B , C , AB , AC , BC , ABC

B , D , F , BD , BF , DF , BDF

CASE 2

 A , B , AB

exhaustive list of clusters represented valuable repetitive patterns with diagnostic
significance. This computer-intensive approach was adopted since there was virtually
no expert opinion available to guide the selection of diagnostically useful fault pat-
terns. Considering all possibilities of size four and under let the weighing algorithm
consider a wide variety of cluster candidates in a reasonable time period.

4.2 Fault Cluster Weighing

Due to the inexact case creation procedure as well as the knowledge that there was not
a one-to-one mapping between faults in the fault log and repairs, a process was created
to assign weights to fault clusters based upon the cases in the case base. As new cases
were continually being added, the system was designed to operate in two modes. In
the learn mode, it calibrated the significance of available fault clusters based upon all
the cases in the case base. During the diagnose mode, it used the weighted clusters as
indicators to match the features of the incoming case with the most appropriate stored
case.
The learn mode involves learning a weight value ∈ [0,1] for each fault cluster. The
weight is intended to be representative of each cluster’s ability to isolate a specific
repair code. If a cluster only appears in cases of a specific repair code, it has a weight
of 1. On the other hand, if that cluster occurs with an evenly distributed frequency in
cases of multiple repair codes, it’s weight is appropriately lowered. A cluster is re-
quired to repeat a certain number of times before it is assigned a non-zero weight.
After weight assignment, a clusters below a certain weight threshold are assigned a
weight of zero. The process is shown in pseudo code below.

Program Calculate_cluster_weights

for each target repair code I (where repair code is a
categorization of a repair action)

 {
select distinct fault codes where (incident date -
fault date) < N days.

Store as case.

Delete from cases where #fault codes < min or > max.
}
for each case CI

{ from distinct fault list Fi belonging to CI
for (j = Maxclustersize ; j=1; j=j-1)

 [Maxclustersize = 4 in our application]

 create distinct Fault clusters of size j .
}

For each fault cluster F_clusterI

{
count total # of cases it occurs in
count # incident codes it occurs in with what frequency.

Cluster significance = ƒ(#cases,#distinct repair codes
it occurs in cases of,discriminating power)

If total # of cases < case_threshold : delete cluster

Generating [1-4] sized combinations of all faults in a case results in generating a lot
of candidate fault clusters. In practice, thresholding resulted in only a small percentage
of fault clusters emerging as significant in that they had non-zero weights. This was
consistent with our approach of examining a wide variety of options to learn the fea-
tures that were significant. In general, the number of single and double fault clusters
that emerged as significant was larger that the number for three and four sized clus-
ters. The average weight though followed the inverse relation. Three and Four sized
clusters had higher average weights that one and two sized clusters. When faults ap-
peared repeatedly in three and four sized combination they were usually strong indi-
cators of diagnostic significance. The weight assignment can simply be recognized as
the maximum conditional probability of any repair for a given fault cluster over all the
repairs it occurrs before.

 Weight of Fault Cluster F_clusteri = Maxj [P(Repair j / F_clusteri)]

5 Case Matching

Once weights for fault clusters were acquired, case matching was straightforward.
New diagnosis was requested by identifying the locomotive that was experiencing
problems. The fault log database was queried for fault codes occurring in the N days
preceding the diagnosis request.

Degree of match between a new and stored case was calculated as

[∑ Weights of common clusters between stored and new case]2

 __

 [∑Weights of Clusters in stored case] X [∑Weights of Clusters in new case]

The repair code associated with the case with the highest degree of match was the
diagnosis returned by the system.

6 Case Validation

The case base currently contains cases for diagnosing over 50 repair codes. The num-
ber of cases associated with each repair code varies from three to seventy. Leave-one-
out testing was performed to test the performance of the case base. In this process, one
case was removed from the case base and formed the testing set. All other cases, as
part of the training set were used to learn fault cluster weights. The case-base was then
used to match and retrieve the top three repair codes in response to the left-out case. If
the repair code associated with the testing case was in the top-3 set, the diagnosis was
declared a success. This process was repeated with every case in the case base being
the testing set once.

The accuracy of the case base was then tabulated as success % by repair code.
There were a few repair codes where the case-base was consistently unable to cor-
rectly diagnose even in top 3 predictions more than 10-15% of the time. The cases
associated with these repair codes were referred back to the domain experts. In most
cases it was discovered that the repair codes were such that the fault codes could not
be expected to predict them. In other instances, the same repair situation was classified
under three different repair codes. Once these were unified, the accuracy of diagnosis
on that repair code increased.

This process of case validation was a necessary closure to our initial approach of
gathering cases that were approximately accurate. This allowed us to avoid requiring
the time of domain experts to verify each case in the beginning. Now only a focused
number of cases were required to be examined that did not appear to be consistent
with each other.

7 Results of Experiments

Accuracy was measured only for repair codes that had over 10 cases associated with
them. After removing repair codes deemed undiagnosable through the process in the
previous section, accuracy on repair codes ranged from 23% to 94%. Overall accuracy
was around 80% , assuming that the correct diagnosis appearing in the top three diag-
noses given by the system was regarded as a success. In general the following trends
were observed.

1. Repair codes associated with a greater number of cases had a higher diagnosis
accuracy rate.

2. Accuracy increased as fault clusters of increasing size were used. The relative
increase in accuracy was small but significant. Accuracy using fault clusters of
size 1 was about 60 - 65%.

8 Related Work

There are quite a few examples of CBR being applied to diagnosis. We discuss a
few that have addressed problems similar to ours both from an application as well
as design viewpoint. Jarmulak et al. (1997) present a system that uses CBR for a
rail inspection application. Their system uses image data as input and shares the
limitation in that it is not easily expressed as a feature vector. They use a hybrid
rule + case-based system for image classification with no adaptation. They also
mention the need to periodically identify cases in the case base that never match
well as possibly ‘bad’ cases or noisy images. Acorn and Walden (1992) report on
SMART – a CBR help-desk system developed for COMPAQ. In contrast to our
semi-automated, mining approach to creating cases, this describes a more conven-
tional case-population process wherein senior engineers were designated as case-

builders with a daily review process. Correctness of the cases is not an issue. How-
ever, their observations that they could go live before having a complete and cor-
rect knowledge base is in agreement with our experience as well. Hennessy and
Hinkle (1992) report on CLAVIER – one of the early commercial CBR applica-
tions. A key aspect motivating its development is described as the inability of the
operators to articulate good rules. This, again, is consistent with our experience.
CLAVIER’s role as corporate memory that increases in quality and quantity with
use very much in line with the role expected of ICARUS. Kitano et al. (1993) with
their SQUAD system highlight the role of CBR systems as maintainers of corporate
knowledge. Since they report dealing with over 20,000 cases, they describe a well
managed human intensive process for case collection, filtering and quality control.
They use a system of abstraction hierarchies to create neighborhood relationships
between attributes. Interestingly, they also appear to use a system of combination
generation. The motivation however seems to be to enumerate a sql type query for
each type of attribute value below in the hierarchy from where the user has speci-
fied the attributes. Bonzano et al. describe an approach towards ‘introspective’
learning of feature weights in CBR, recognizing that standard CBR matching func-
tions can be extremely sensitive to noise and irrelevant features and suitable weight
vectors are not always available. While this concept is recognized in our approach,
we do not make an effort to adjust feature weights in response to incorrect retrieval.
This arises from our understanding that the error could lie with the case itself, and
consequently consistent incorrect retrieval is used as an indication of a defective
case rather than incorrect feature weighing.

CBR applications in similar domains have been reported under the INRECA project
(Klaus-Dieter et al., 1995). INRECA uses induction to extract a decision tree to
guide the user but uses CBR to handle unknown values. An application of INRECA
to robot diagnosis uses a combination of causal rules, decision trees and weight
factors for knowledge representation. This seems consistent with future develop-
ment plans for ICARUS where a hybrid rule/case based system is eventually envis-
aged. In another application to CFM56 engines, use of legacy data to create initial
cases with ongoing integration of model based knowledge is described. A concur-
rent benefit of the case building activity mentioned here is creation of a knowledge
management process that helps highlight high occurrence failure modes through a
systematic cleaning and analysis of data. This has been the case with ICARUS as
cost-benefit analysis of fault generation from a diagnostic point of view is being re-
visited with a goal of generating more meaningful faults on the locomotive.

9 Institutional deployment and Cost-Benefit Analysis

ICARUS development was started in early 1997. A first prototype was deployed on
pilot fault log data from 35 locomotives in October of the same year. A team of five
diagnostics experts independently examines the fault logs daily and arrive at a diagno-
sis. These conclusions are compared with the output of ICARUS. This constituted the

validation phase of the tool. An integrated recommendation was delivered to the rail-
road based on this activity. The primary benefit of identifying problems is that the
locomotive can be better scheduled for repair and unscheduled failures leading to a
mission loss are avoided. In most instances, a recommendation is kept open until feed-
back is obtained from the repair shop as to the actual work done. If this feedback cor-
responds to the top 3 repair recommendations of the CBR tool, the case is closed and
declared as a success. If not, then it is classified as a failure. One field engineer at GE
Transportation systems has been assigned the primary responsibility of running and
validating the tool each day.

Both successful and failed attempts at diagnosis are examined in greater detail by
the tool design team including the author. In many cases, experts point out that certain
problems are not well manifested in fault logs and cases relating to these repairs are
removed from the case-base. The primary driver for seeking expert input is when the
case base is unable to predict a repair code at a > 50% accuracy despite having > 10
cases for it. This focused approach helps minimize expert time requirements.

Some early successes in diagnosing problems in the pilot program have helped
management allocate increasing resources to the project. The biggest benefit is that
new incoming cases (that are not mined from historical data but based upon daily
analysis) are of much higher quality due to expert validation and have contributed to
increasing the accuracy of the tool. It is estimated that a savings of a few thousand
dollars could be realized per locomotive per year just by optimizing its repair actions
based upon an accurate understanding of the failures occurring on board. Over 350
locomotives expected to be monitored in 1999-2000, this adds up to a considerable
sum. There is a considerable productivity benefit as well as a limited staff of upto ten
experts will be required to monitor the 350 locomotive fleet and tools like ICARUS
can considerably reduce the effort required for diagnosis.

10 Discussion

A number of lessons were learned in the course of this project. Some of these may be
listed as

1. The availability of high quality cases cannot be taken for granted. In complex
domains specially, it becomes increasingly difficult to find expertise that will
certify cases as fully correct. In this application we were specially mandated
not to rely on ‘preconceived’ expert knowledge to guide the case base devel-
opment – rather to learn from the data. Many experts freely acknowledged that
there was possibly much more hidden in the data than they had expertise over.

2. Case representation can be a design issue. In most case-based applications, the
identification of a case feature vector arises naturally from the way the case
exists. Out of many possible features that could characterize the cases in this
application, fault combinations were one of the features identified as being
potentially significant and were chosen for case representation. Feature

weighing was able to consider and eliminate a majority of fault clusters as be-
ing diagnostically insignificant.

3. The assumption that each case contained data associated with only one diagno-
sis was not valid in this case. The extent that multiple simultaneous problems
were being manifested in the fault codes was not known. Again, this was ad-
dressed partly by choosing candidate cases carefully and subsequently by fea-
ture weighing. Only fault clusters that consistently occurred in cases of a par-
ticular repair code were assigned high weights by the feature weighing algo-
rithm.

4. Commonly recognized advantages of a case-based reasoning approach like
quick deployment, capability for continuous learning, low knowledge elicita-
tion needs and a measure of explanation stood true in this application. The
system was developed in about eight months and is currently running on live
pilot data. While the initial case seeding was based on historically mined
cases, future cases that are being added are of much higher quality since the fi-
nal resolution of problems will are accurately tracked and verified from the
field.

The portability of the case-based approach was vividly demonstrated once the
system was developed. Business focus required that ICARUS be applied to a
model of locomotives different from the data on which the system was devel-
oped. In less than a month, new seeding cases were acquired, feature weights
were recomputed and another version of ICARUS was released. This was in
comparison to a rule-based approach which would have required development
from scratch. For reference, previous rule-based approaches for locomotive
models had taken few years to develop.

Incremental learning was specially important in this application. Locomotives
undergo frequent hardware and software changes. A case-based approach
could adapt to this, given sufficient quantity of cases.

5. Learning weights for case features can help make implicit knowledge explicit.
In many cases, a physical explanation could be attached to particular faults oc-
curring together. This provided an additional means to occasionally check the
knowledge in the case base.

6. As yet, there is no concept of adaptation in the working of ICARUS.

7. Finally, the ability to come up with a working albeit incomplete system early
on was vital in maintaining management and user involvement in the applica-
tion.

11 Conclusions and Future Work

ICARUS will be deployed for providing monitoring support to over 350 locomotives
in 1999. As more cases are added to the system, we are exploring additional features
by which to characterize cases to sustain and improve the system’s accuracy. Prelimi-
nary results incorporating fault occurrence trends as case features have shown evi-
dence of positively impacting diagnostic accuracy. As can be expected, this too has a
stronger effect on certain repair codes as compared to others.

In conclusion, we have presented a case-based application for diagnosis that em-
ploys a variety of pre and post-processing techniques to transform historical data into a
format suitable for a case-based approach. We present an ‘propose and verify’ ap-
proach towards case generation where candidate cases of approximate diagnostic
accuracy are generated and case performance metrics are used to isolate cases that
may need expert validation. Feature weights are learned from the data. The application
is such that a complete and accurate diagnostic formulation with any approach is
practically impossible. Our experience has shown that a case-based approach has been
able to contribute significantly towards capturing a tractable amount of knowledge
even if approximately, and consequently reducing the load of the diagnostics expert.

Acknowledgements

The author would like to acknowledge and thank Nicholas Roddy for developing the
CBR software as well as running validation tests. Thanks are due to Tom Shaginaw
for motivating the Case-Based approach. Special thanks to David Gibson for support-
ing our efforts with business and data support and domain expertise.

References

1. Jarmulak, J., Kerckhoffs, E.,Veen, P. : Case-Based Reasoning in an Ultrasonic Rail-
Inspection System. In: Leake, D., Plaza, E.(eds.): Case-Based Reasoning Research and
Development. Lecture Notes in Computer Science, Vol 1266. Springer-Verlag New York
(1997) ,43–52.

2. Acorn,T., and Walden, S. : SMART: Support Management Automated Reasoning Tech-
nology for Compaq Customer Service. In Proceedings of AAAI-92. Cambridge, MA:
AAAI Press, MIT Press.(1992)

3. Hennessy, D., and Hinkle, D. : Applying Case-Based Reasoning to Autoclave Loading.
IEEE Expert,(1992), 7(5), 21-26.

4. Kitano, H., Shimazu, H. and Shibata, A. : Case-Method: A Methodology for Building
Large-Scale Case-Based Systems. In Proceedings of the Eleventh National Conference on
Artificial Intelligence, (1993), 303-308.

5. Bonzano, A., Cunningham, P. and Smyth, B. : Using Introspective Learnng to Improve
Retrieval in CBR : A Case Study in Air Traffic Control. In: Leake, D., Plaza, E.(eds.):
Case-Based Reasoning Research and Development. Lecture Notes in Computer Science,
Vol 1266. New York (1997) ,291–302.

6. Klaus-Dieter, A., Auriol, E., Bergmann, R., Breen, S., Dittrich, S., Johnston,R. Manago,
M., Traphoener, R., Wess, Stefan : Case-Based Reasoning for Decision Support and Diag-
nostic Problem Solving: The INRECA Aproach. In B. Bartsch-Sporl, D. Janetzko & S.
Wess (eds.), Proceedings of the 3rd workshop of the German special interest group on CBR
, (1995), 63-72.

